JS-2 Linear Power Supply

$ 925.00


Quotes from just a few of the many people around the world who write to us regarding their experience with the JS-2 in their music systems:
From Singapore:
"Hi Alex, 
Initial listening already sounded great. I thought Core 
Audio Kalos power supply (which is much more massive and expensive 
than JS-2) was already among the best, but it seems JS-2 surpasssed it 
(without the MMK kit installed yet). The sound stage was deeper and 
bigger and the music sounded livelier with better nuances and texture. 
It is a great buy.
From Italy:
"now… must confess I was a little skeptical about linear power supply benefits
(ok, ok: I thought there was going to be some “ethereal” improvement)
all I can say from the very instant music begun to play is… HOLY COW!!! :-)
great job indeed, Alex!
Best, Paolo"
From San Diego, California:
"Yes for me the JS-2 was an obvious improvement over the Paul Hynes
in the following ways:  Better and more palpable bass, a more sustained
decay of the musical instruments and studio or stage/venue presence, a more
"jaw dropping" experience and stronger connection with the music.
Exceptional execution of a power supply in my opinion. Very well done!  
Yes, you can quote me.
Brad S."

Dual-output, choke-filtered linear power supply with four user-selectable DC output voltages.  

Two independently adjustable, separately regulated outputs; Voltage choices are user set from the back panel: 5V, 7V, 9V, or 12V.  
Guaranteed current capability is 5 amps continuous from either output at any voltage setting.  
(Up to 7.0 amps split between outputs, depending upon DC voltage combination; Instantaneous capability of up to 10A).
User configurable for worldwide operation at 100/120/220/230/240 volts AC.

Dimensions: 9.0 inches wide x 9.1 inches deep x 3.3 inches tall (with feet).

Weight: 10.5 pounds; 14 pounds in its full double-box shipping cartons (shipping dimensions 14"x14"x9").

Warranty: 3-year parts and labor (excludes shipping costs after 90 days).

Made in U.S.A.   Shipping anywhere in the world via Express Mail Intl. (EMS) or FedEx (custom-quoted deep discount rates by country; often less than than postal, plus faster and more secure).


1 custom 5-foot DC cable. This special cable is a shielded, star-quad with 4 conductors of tinned, stranded 18AWG; paired at the connector that makes it about a heavy 15AWG.  Gold/copper/brass Oyaide (5.5mm x 2.5mm) DC barrel plugs from Japan at both ends. Upon request we can terminate one end with a 2.1mm version of the Oyaide connector in case you need that size at the device end.

[A second one of these in-demand custom cables can be ordered by JS-2 purchasers for $75; Specify length and device-end termination.]

2-meter, 16AWG, shielded AC power cord (USA mains plug, but you can cut and attached an appropriate local plug; it is a good heavy and shielded cord, so adapting it is worthwhile.)

1 SMA coax cable for optional activation of JS-2's unique Kelvin-sense voltage feedback circuit (currently supported only by the UpTone MMK).


The choice to use a costly, custom, electrostatically shielded 100VA R-core transformer is highly beneficial to the JS-2 design.
Just powering the computer, the difference—between the R-core and a toroidal transformer in the bass was shocking. And in comparisons powering a DAC or other audio-signal-handling component, the sonic benefits ranged top-to-bottom, cymbals and piano to deep bass.  Plus R-core transformers, due to the gapless construction of the core, are mechanically silent. 


John Swenson on the benefits of a choke-filtered linear power supply:

The traditional cap only filter (transformer, diode bridge, big cap) produces raw DC with a sawtooth riding on top. That sawtooth produces lots of high frequency components that the regulator has to deal with. Traditional regulators do very well at low frequencies, but have lousy characteristics at high frequencies which means a fair amount of those high frequency components from the cap-only filter get through to the regulator. Fancy discrete regulators do well at blocking the high frequency components, but add cost and complexity to a PS. Our approach is to use a properly designed choke-based supply whose ripple is a perfect sine wave, no high frequency components, thus a traditional regulator works very well. The discrete regulator is not needed to deal with the high frequency components, since there aren't any.

All diode types except Schottkys emit a burst of ultrasonic noise as they turn off. This noise can go forward into the load circuit AND it can go back into the AC line, and it can also excite the transformer resonance. The "slow" diodes still have this ultrasonic noise. Schottkys are the only type which do not have this noise. Schottkys also usually have about half the voltage drop of other diode types and are usually faster. Which type to use depends a lot on what your supply looks like and what you are trying to optimize for. 
With a traditional low voltage design with a large cap right after a bridge you get large current spikes, these produce a large amount of high frequency noise which needs to be filtered by what comes after the cap. In this type of circuit the slow diodes can help cut down on the extent of the high frequencies generated by the sharp high current pulse. BUT they still generate the ultrasonic noise.

This is another reason why we like to use the choke-based design. With the choke there is no steep high current pulse, so no disadvantage to Schottky diodes. You get the advantage of no ultrasonic noise, lower voltage drop (so lower power consumption in the diode) and no big massive current pulses.

Related products